Muhammad Osama: SAT Solving with GPU Accelerated Inprocessing

Event Details

Since 2013, the leading SAT solvers in the SAT competition all use inprocessing, which unlike preprocessing, interleaves search with simplifications. However, applying inprocessing frequently can still be a bottle neck, i.e., for hard or large formulas. In this work, we introduce the first attempt to parallelize inprocessing on GPU architectures. As memory is a scarce resource in GPUs, we present new space-efficient data structures and devise a data-parallel garbage collector. It runs in parallel on the GPU to reduce memory consumption and improves memory access locality. Our new parallel variable elimination algorithm is twice as fast as previous work. In experiments our new solver ParaFROST solves many benchmarks faster on the GPU than its sequential counterparts.

This is a joint work with Armin Biere (Johannes Kepler University).